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A numerical method is developed for approximately solving stationary wave propagation 
problems for which most of the energy propagates in an angle band of less than 90” about a 
tixed direction. This property often occurs in realistic physical models. The numerical method 
is based on factoring out the principal propagation direction in the solution and then applying 
the finite element method. The method is applied to wave propagation in a duct or waveguide 
and to the exterior scattering problem. It is shown both theoretically and by means of 
numerical examples that this method requires considerably less grid points and computational 
cost than standard discretization methods. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

The numerical solution of Helmholtz type equations is important in many 
physical problems describing the propagation and scattering of time-harmonic 
waves in general geometries. A common feature in many of these problems is that 
most of the energy propagating in a given coordinate direction is contained in a 
narrow angle band (not necessarily about the horizontal) and very little backscat- 
tering is present. This occurs, e.g., in connection with radio wave diffraction 
problems [9], laser beam propagation [13], electromagnetic wave propagation in 
waveguides [19], plasma physics [5], seismic wave propagation [7], and 
underwater acoustic propagation [ 181. 

To clarify the concept of nearly one-way wave propagation, consider the follow- 
ing model of long range acoustic wave propagation in the ocean. Using cylindrical 
coordinates, the acoustic pressure u(r, z, @) corresponding to a point source 
satisfies the Helmholtz equation 

= -Fp,6(z-zz,)d(r) 

(1.1) 
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with suitable boundary conditions, where z is depth, r is the horizontal range, @ is 
the azimuthal angle, K is a reference wave number, and n(r, z, @) is the index of 
refraction. The source strength is p, and it is located at r = 0, z = z,. In a great 
many ocean environments, it can be seen [ 181 that for long range the material 
inhomogeneities (e.g., n(r, z, @)) are slowly varying and the acoustic energy 
propagating outside of a narrow angle band is attenuated by bottom interactions. 
Under these assumptions, it follows that for sufficiently large r we have u(r, z, CD) = 
U(r, z, @) HA(G), where U is slowly varying in r and the Hankel function satisfies 
Hh( Kr) w (2/niKr) “* eiKr for Kr 9 1. Hence it follows that for Kr $ 1, we have 

U(r, z, @)E((xiKr/2)1’2 epiKru(r, z, @) (1.2) 

and U satisfies 

$+2iK$!+$+$$+K*(.‘1) U=O. (1.3) 

The important point is that the r-derivatives of U are much smaller than those of u. 
Much work has been done to solve one-way propagation problems numerically 

using parabolic equation type methods (see [S, 7, 9, 13, 18, 193). In such cases, the 
elliptic boundary value problem is approximated by a parabolic initial value 
problem that may be efficiently solved numerically by a marching algorithm. For 
example, if it is assumed that 18*U/8r21 4 I2iK(aU/ar)l (paraxial approximation) in 
(1.3), then we obtain the parabolic equation 

2iKg+$+$$+K2(n2-l)U=O. 

While such methods are often quite effective, it is not always clear how much 
accuracy is lost when making the paraxial approximation. For example, while 
Eq. (1.4) is well suited for describing the propagation of sound in the far field of the 
water column, this may not be the case near an interface of the water column and 
the sea floor (due in part to a discontinuity in n at this interface and the potentially 
much larger variations in n in the sea floor). Furthermore, this will in general not 
be the case in the near field. It is still expected, however, that the propagation will 
occur, for the most part, in an angle band of less than 90” about one principal 
direction. 

An alternative approach is to discretize the original elliptic problem, (1.1 ), using 
a tinite element or finite difference method. This approach does not depend on or 
utilize the fact that there is a distinguished principal propagation direction. For 
large frequencies or large computational domains, the resulting system of equations 
can be extremely large. An iterative method has been recently developed, [2], to 
efficiently solve these non-selfadjoint, indefinite systems of equations. However; it is 
clear that a method for reducing the number of equations would greatly help both 
in reducing computational cost and in enlarging the scope of the numerical method. 
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In this paper, we shall describe two finite element methods for approximately 
solving the full elliptic problem that allows for a dramatic reduction in the number 
of equations when the propagation is nearly uni-directional. The methods are based 
on factoring out the main propagation direction in the solution. Consider, for 
example, problem (1 .l). Method I consists of expressing (1 .l) as a variational 
problem, then replacing u by U (using (1.2)) in this variational formulation, and 
finally discretizing the new variational problem for U using a standard piecewise 
polynomial finite element trial space. (This method was analyzed by the author in 
[ 111 in connection with the exterior scattering problem. However, no numerical 
results were presented there.) Method II consists of transforming Eq. (1.1) into 
(1.3) (again using (1.2)) and then applying the finite element method using a stan- 
dard piecewise polynomial trial space to approximate U. Since U is much smoother 
than u with respect to r, both methods result in a considerable reduction in the 
number of r-grid points and hence in the computational cost. This will be 
demonstrated both for propagation in a duct or waveguide and for the exterior 
scattering problem. Note that finite difference methods could also be developed that 
take advantage of the smoothness of U, however, we only consider finite element 
methods. 

We close this section by briefly outlining the remainder of the paper. In Section 2, 
we make more precise the definition of nearly one-way wave propagation. Further- 
more, we demonstrate this for both the exterior problem and propagation in a 
waveguide. We also consider various ways of choosing a suitable reference wave 
number. In Section 3 we describe and analyze Methods I and II in the context of 
propagation in a waveguide. We shall see that the choice of test space can have an 
important bearing on the effectiveness of both methods and that in general the best 
results are obtained by incorporating the main propagation direction in the stan- 
dard piecewise polynomial test space. (For example, in connection with problem 
(l.l), the test space would consist of piecewise polynomials multiplied by eiKr.) In 
this case it is shown that Methods I and II are equivalent. In Section 4 we present 
numerical results demonstrating the effectiveness of this method both for 
propagation in a waveguide and the exterior scattering problem. In Section 5 we 
summarize our results. 

2. NEARLY ONE-WAY WAVE PROPAGATION 

We consider the Helmholtz equation 

(-A - K2n(x)) u(x) =f(x) in Q, (2.1) 

where K is real, Q denotes an unbounded region in R* (or R3), n(x) denotes the 
index of refraction, and u satisfies some specified boundary condition on XJ and an 
outgoing radiation condition at infinity. Suppose that x = (p,, p2) denotes an 
arbitrary point in Sz expressed in a convenient coordinate system and A denotes the 
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Laplacian expressed in this coordinate system. We shall use standard notation for 
the Sobolev spaces H’(B) with I a non-negative integer and B a bounded subset of 
R’. To be precise, set 

with the seminorm, 1 lHIcBJ, defined by 

I4 HJ(B) = 2 
( 1 j=lJ B 

p;,D;,‘u(x)l* dx ‘7 
) 

H’(B) consists of all complex-valued functions zi defined on B such that 
lbll H,(g) < co. Thus H’(B) consists of square integrable functions with square 
integrable derivatives up to order 1. 

We define nearly one-way propagation with respect to the p1 coordinate direc- 
tion as follows. Assume that for each integer m > 1 and some real number K’ # 0, 
we have 

u(x) = e’K’TJ(x), (2.2) 

with 

1 Iq$px412 dx = 6 1 lDi,,D~*-Ju(x)12 dx, j = l,..., m, (2.3) 
B B 

where 6 $ 1 is independent of K. In many cases, we shall see that 6 + 0 as K + co. 
We shall also see that 6 is often a function of the set B c 52. It follows from (2.3) 
that U is a much smoother function of pi then u. Note that the expressions on both 
sides of (2.3) contain at least one derivative with respect to p,. In many cases of 
practical interest, the p,-derivatives of u will be small compared to its 
PI-derivatives. Hence our definition could be strengthened by adding the following 
condition to (2.3): 

j" I~~2U(x)12dx4/ ID~,u(x)l*dx,m> 1. (2.3’) 
B B 

This is frequently the case when the paraxial approximation is employed. Note that 
the definition (2.2) (2.3) of nearly one-way propagation could be readily extended 
to higher dimensions. 

We next illustrate the definition (2.2), (2.3) in the context of wave propagation in 
a duct or waveguide. For simplicity, we consider the following two-dimensional 
problem in Cartesian coordinates, x = (x1, x2): 
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(-A - K2n(x)) u(x) = 0 in Q. w2 x2) 
8x1 

= g(x2), 

aa, 9 0) 
(2.4) 

ax2 
=24(x,, l)=O, and u(x) is outgoing at infinity, 

where the waveguide Q is given by 

Q={x=(x1,x2):0~x1<00,0~x*~1}. (2.5) 

Assuming that n(x) E 1 for x1 sufficiently large, say x1 Z x0, the appropriate out- 
going radiation condition is expressed by the fact that u may be represented as a 
sum of outgoing modal solutions for x1 3 x0: 

u(x) = f qp+~ 1 

j= I 
cos j-z 71x2, 

( ) 
(2.6) 

where 

Kj=iJ((j-4)x)*-K* for K<(j-&)n 

=,/K*-((j-&)71)* for K>(j--$)n (2.7) 

and K#(j-f)q j=1,2 ,.... 
Note that the modes corresponding to ( j - $) z > K are exponentially decaying 

and hence may be neglected in the far field. The remaining modes are propagating. 
It can be seen that (2.4) may be replaced by a Helmholtz boundary value problem 
on the bounded domain 9,~=(x=(x,,x2):O~x,<x”,0<x2~1}, where 
xm > x0. In this case the outgoing radiation condition is replaced by a boundary 
condition on x1 = x4) of the form &/ax, = T(U), where T may be a global boundary 
operator ([8] or [lo]) or a local boundary operator ([a] or [14]). We shall 
briefly discuss these boundary operators in the next section (see (3.13)). 

Physical models exhibiting nearly one-way propagation generally satisfy the 
following two conditions: (i) most of the energy propagates in a narrow angle band 
about a fixed direction (not necessarily the horizontal), and (ii) backscattering is 
negligible. To illustrate the narrow angle condition (i), consider a model in which 
most of the x,-propagation of the solution in a region Bc D is at an angle of u 
radians with respect to the positive x, axis with 1~11 @ n/2. Hence given a fixed 
integer m 2 1, we assume that the solution is given by 

u(x) = p--“(x), 

where the x,-derivatives of u are sufficiently small in B that 

(2.8) 

s B ID’,,D’J-‘u(x)~~ dx~~Kcos a12j s, ID’Jp’o(x)(2 dx, j=l,..., m. (2.9) 
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Set U(x) = eEiKXLU(x) = e iK(cosa- ‘%(x). Since lcos a - 1) Q 1, it follows readily 
from the assumptions on o that (2.3) holds with p1 = x1 and R = K. Note that if the 
x,-derivatives of u are sufficiently small, then (2.3’) holds as well. 

Condition (i) is closely related to the modal expansion for u given by (2.6) and 
(2.7) for x0 < x1 < xoo. Suppose that the exponentially decaying modes are negligible 
for x1 = x. Thus 

M 

u(x) = 1 ujeiFxI cos( j- 4) 7cx2 with (M-$)n<K. (2.10) 
j=l 

Suppose that K’ is chosen so that JR - Kjl 4 Kj forj= l,..., M. Then (2.3) holds for 
XOdX, <x” with U(x) = e- iK’xl~(~) and p1 =x1. For example, if all of the K, 
present in (2.10) are clustered together, then K’ may be defined as the average of 
the modal wave numbers 

K=; ,f Kj. 
]=I 

(2.11) 

This is the case, e.g., if A4 < K since each Kjz K. (In this case, (2.3’) also holds.) 
Similar results hold if n is not constant but is only a function of x2 for 

x0 6x, < xm. In this horizontally stratified case, the Kj might have to be calculated 
numerically as the solution of an eigenvalue problem. (It is not necessary, however, 
to calculate the eigenfunctions.) If n(x,, x2) or other inhomogeneities vary slowly 
with x,, it may be necessary to calculate the Kj corresponding to a few different 
values of x1. 

Remark 2.1. If more information is known about the coefficients uj in (2.10) 
then better values of K’ may be obtained than that given by (2.11). For example, K 
may be defined as the weighted average of the modal wave numbers 

(2.12) 

The selection of an optimal reference wave number, K’, is treated in more detail in 
[16] in connection with the parabolic approximation. The heuristic argument for 
determining R in [16] is based on Rayleigh’s principle for progressive waves and 
appears to be applicable in the present context as well. For the solution u given by 
(2.10), the value of R predicted in [ 161 is given by 

r2=IZ~I l”j12~ 
CEI lujl2 

(2.13) 

We shall see by means of numerical examples in Section 4 that while better choices 
of K’ help in reducing the number of gridpoints, even the choice given by (2.11) is 
extremely effective. 
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We next consider condition (ii) above. Very little backscattering is present in B 
provided all lateral inhomogeneities in B (i.e., those in the x, direction) are slowly 
varying and any discontinuities are sufficiently small. This includes x,-variations in 
n(x) as well as all boundaries and interfaces contained in B. Consider, e.g., problem 
(2.4) with n(x)= 1 for x, <xc<xoo and n(x)- 1 +E (with small E>O) for 
xc<x, 6x”. We assume that (M- $) rt < Kc (M+ t) 71 (so that there are at most 
A4 propagating modes in the solution). We also assume that all exponentially 
decaying modes are negligible and the data g is such that only the first mode, 
eiKlxl cos(rcx,/2), is initially propagating outward. 

It is easily seen that 

u(x) = eiKIxl cos y 

j=l 

for xi <xc, (2.14) 

,f, 7”(E)ei~x’~~~J((j-~)~)2+K2E for x~<x,, 

where Ai and Tj(s) are the reflection and transmission coefficients, respectively, 
due to the jump in n(x) at xi = xc. Using (2.14) and the fact that u and &/8x, are 
continuous at xi = xc, it may be seen that R/‘(E) = O(K2c) and Tj(a) = O(K’&) for 
K2c small. Thus, condition (2.3) holds with B = 52, p = x,, and K’ = K, provided 
K2t is sufficiently small. Observe that even if K’E is not small, condition (2.3) can 
still hold with B={x=(x,,x2):xc<x,~x”,0<x2~1} and K’suitably chosen 
since u will be a sum of outgoing modes in this region. 

Remark 2.2. The condition of nearly one-way wave propagation holds for a 
wide variety of complicated problems in two and three dimensions. In fact, it can be 
easily seen that the applicability of typical outgoing radiation boundary conditions 
employed in practice (see [12]) is closely related to the existence of a principal 
propagation direction outside of some bounded set. This condition will often be 
valid to varying degrees in different subregions (i.e., 6 = 6(B) in (2.3)). This can be 
due to the varying effects of inhomogeneities and evanescent modes in different sub- 
regions. This can also follow when the outgoing waves are most conveniently 
expressed asymptotically using far field approximations. (For example, we saw this 
in connection with problem (l.l), where the outgoing solution in cylindrical coor- 
dinates was expressed in terms of a Hankel function.) 

We close this section by considering the scattering of waves from a bounded 
obstacle in three dimensions. The model problem is given by 

(-A - K’n(x)) u(x) =f(x) in Sz, t = g(x) on I%?‘, 

aw F+(r-‘-iK)u(x)=o(r-l) as r=IxI -co, 

(2.15) 



NEARLY ONE-WAY WAVE PROPAGATION 63 

where 52 c R3 is the complement of a bounded obstacle Q’, f = 0 and n(x) z 1 out- 
side of some bounded set, and we employ spherical polar coordinates (r, o, 0) to 
represent an arbitrary point x. It follows from Green’s theorem using the argument 
in [l] that 

cc Ujh 4 K) u(x) = eiKr 1 
d 

for r = 1x1 sufficiently large. 
j=l 

Hence U(x) = eeiKrU(x) satisfies the following estimate for each derivative P: 
C 

Pau(x)16- rlal + 1 for r sufficiently large. (2.16) 

It may thus be readily seen that (2.3) holds with pi = r for regions B sufficiently far 
away from the inhomogeneities. Therefore, the solution of the exterior problem 
(2.14) exibits nearly one-way propagation in the outgoing radial direction suf- 
ficiently far away from the obstacle. 

3. THE NUMERICAL METHODS 

In this section we describe some finite element methods for efficiently treating 
nearly one-way propagation in the sense of definition (2.2), (2.3). We begin by very 
briefly describing the standard finite element method (SFEM) in connection with 
the boundary value problem 

(-A - K%(x)) u(x) =f(x) in R*, t=O on aa, 

$ = T(U) on Too with as2 = TU Tm, 

(3.1) 

where ajan denotes the derivative in the outgoing normal direction, f(x), n(x), and 
dQ are smooth, and the boundary operator T incorporates the appropriate out- 
going radiation condition on Tm. For simplicitiy, we consider Cartesian coor- 
dinates, x = (x,, x2), in two dimensions. The finite element method is based on 
expressing (3.1) in the following weak or variational formulation, obtained using 
integration by parts, 

a(u,u)=(f,u)Vv in PEP(Q), where 

a(u, u) = JQ (Vu(x). Vu(x) - K*n(x) u(x) v(x)) dx (3.2) 

- 
P W)(x) v(x) ds,, J-c.2 

where ( , ) denotes the L*(D) inner product. 

581/64/l-5 
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In order to approximately solve (3.2), we approximate HE by a family of finite 
dimensional subspaces Sh c HE, h E (0, h,). The spaces Sh are typically constructed 
by subdividing B into simple subsets called elements, such as triangles or 
quadrilaterals. Let Ax,(&) denote the maximum x1(x2) grid sizes over all the 
elements, th, in 52. (For example, if th consists of right triangles or rectangles, then 
Ax, and Ax, denote the largest lengths of the horizontal and vertical sides, respec- 
tively, over all the th.) The parameter, h, is defined as max(Ax, , Ax,). The spaces Sh 
generally consist of sufficiently smooth functions vh such that vh restricted to th is a 
polynomial of degree m- 1 for some fixed integer m > 2. The following 
approximation property holds for the finite element spaces usually employed in 
practice: 

If v E H”(Q), then 3 a vh in Sh and a constant C, independent of u, 
Ax,, and Ax, such that 

IIU - UhlI ac.qn) + Ax, IIDx,(u - vh)lLqn) + 4 IPxJv - ohIll r*(o) 

f (Ax,)” (Ax,)~(“--~) jB ~Di,,D~2-‘v(x)~2 dx 
112 

. 
j=O 

(3.3) 

The finite element approximation, uh, to the solution, u, of (3.2) (or 3.1)) is defined 
as the solution of 

a(Uh, v”) = (f, vh) Vvh in Sh. (3.4) 

For comprehensive treatments of the finite element method, see [6] or [20]. 
Now suppose that (2.2) and (2.3) hold with B= Q and p, =x,, so that 

u(x) = eif- U(x). In view of (2.3) and (3.3), we see that fewer x1 grid points (i.e., 
larger grid sizes, Ax,) are needed for approximating U than are required for a 
similar approximation of u with the same accuracy. We are thus motivated to 
approximately solve for U instead of u using the finite element method. We propose 
two methods for doing this. Method I consists of first replacing u(x) by U(x) = 
e -‘iK’xl~(~) in the variational formulation, (3.2), to obtain 

A,(U v)=4u, u)=(f, 0) Vu in HE. (3.5) 

Using the bilinear form A ,( , ) defined in (3.5), we may now discretize (3.5) using 
the finite element “trial” spaces Sh defined as before. We thus wish to obtain a 
function UT in Sh satisfying 

A,(U:, V”)= (“6 V”) VVh in Sh, (3.6) 

where Sh is a suitable “test” space. For example, Sh could be taken to be Sh (the 
usual piecewise polynomial space). Alternatively, we can define Sh as the space 
Sh E {@ 1 fib = eiKxlvh, vh in S”}. Note that the approximate solution, u:(x), of (3.2) 
is given by e’K”lUf(x) in Sh. 
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Method II consists of first substituting U(X) = eiKxlU(x) directly into the boun- 
dary value problem (3.1). Hence we obtain a new boundary value problem for U. 
We next approximate U by applying the finite element method to this resulting 
boundary value problem. Specifically, we first obtain an equivalent variational 
problem as before by integrating by parts: 

A*(U,~)=(.Lu) Vv in HE. (3.7) 

We now discretize (3.7) using the finite element trial space Sh to obtain the follow- 
ing problem for U: in Sh, 

A*(q, Vh)= (f, Vh) VVh in Sh, (3.8) 

where again Sh is a suitable test space and the approximate solution of (3.1) is 
given by U:(X) = eiKxl U’;(x) in Sh. Note that Method I and Method II yield different 
discretizations in general, so that ut # u’;. Furthermore, the choice of test space Sh 
will have an important bearing on the efficiency of the numerical method. 

To clarify these ideas, we consider problem (3.1) for the case in which Q is the 
waveguide section given by 

Q={(x,,x,):o<x,<x”,o~x,~l} (3.9) 

and T is an appropriate radiation boundary operator satisfying 

W iK’xluh)(~m, x2) = eirxmT(uh)(xm, x2) Vx, in [0, 11. 

This condition holds for typical radiation boundary operators, T, including those 
given by (3.13) below. Applying Method I with Sh = Sh, we see from (3.2), (3.5), 
and (3.6) that 

A,( U!, Vh) E u(eiKxrU~, Vh) 

E j ( 3P(F) 
R 

eiKxl VU:(x)-VVh(x) + iKU:(x) ax 
1 (3.10a) \ 

-K*n(x) Uf(x)vh(x) dx 

_ eiK’xm 

s ’ T(U;)(xm , ~2) Vh(xmv ~2) dxz 
0 

=(A Vh) VVh in Sh. 

Applying Method I with Sh = S” and noting that each vh in zh can be expressed as 
Vh(X) = eiK’xl Vh(x) with Vh in Sh, we obtain 
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A,( Ut, u”) E u(eiKxlUf, eiKxlVh) 

= 
i( 

avh(x) - vu:(x)~vvh(x) + 2-K’ R 
U?(x) 7 

I 

-Fvh(x) 

(3.10b) 
+(K”-K2n(x)) Uf(x)vh(x) dx 

1 

- s 1 w:)( xm,x2) Vh(xm, x2) dx2 = (F, V”) V Vh in Sh, 
0 

where F(x) E eMiKxlf(x). It is easily seen that (3.10a) and (3.10b) yield different dis- 
cretizations. 

We next consider Method II and note that (3.1) is transformed into the following 
boundary value problem for U: 

e iK’xl -A -2iK’ $+K”--K2n(x) U(x)=f(x) in Sz, 
1 

am, 1) aw,, 0) = 0, au(o, x2) 
ax, = ax2 ax, 

+ iK'U(0, x2) = 0, 

x-w=, x2) 
axI + iKU(xrn, x2) = T( U)(xrn, x2). 

We now apply the finite element method with test space Sh = 3” to this boundary 
value problem. Since each vh in Sh can be expressed as vh = eirXIVh(x) with Vh in 
Sh, we obtain 

A,(U;, tl”)=j (VU;(x)VV’(x)-2% 2 (x)vh(x) 
R 1 

+ (K” - K2n(x)) U;(x) vho) dx 

- I 
1 T(u;)(x”, ~2) 

h 
V (97x2) dx, (3.11) 

0 

+iK 
I ’ W:W’o, ~2) VhW’, x2) - U:(O, ~2) Vh(O, ~2)) dx2 

0 

= (F, Vh) VVh in Sh, 

where F(x) = ePiKxlf(x). Integrating by parts, we see that 

z (x) vh(x) dx, + U:(xm, x2) 
I 

(3.12) 

x Vh(xm, x2) - Uf(O, x2) Vh(O, x2) 
> 

dx, 
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Combining (3.10b)-(3.12), we conclude that (3.10b) is the same as (3.11). Hence, 
Method I and Method II yield the same discretization (and approximate solution) 
when Sh = s”. 

It is readily seen that Method II yields a discretization different from (3.10a) or 
(3,lOb) when Sh = Sh. Also note that no oscillatory functions such as eiKxl appear 
in the integrals used in the formation of the stiffness matrix when Sh = Sh, whereas 
such oscillatory functions do appear when Sh # Sh. Since typical numerical 
quadrature formulas frequently employed in calculating the stiffness matrx have dif- 
ficulty with such oscillatory functions, it appears that the use of Sh as a test space 
offers certain computational advantages. We shall see below that there are also 
advantages in using zh from stability considerations. 

We next consider convergence rates for Methods I and II (with test space 
Sh = S”) applied to (3.1) with Q given by (3.9). We assume that n(x) E 1 and 
f(x)=0 for x,>x’ with x”<xm. For our radiation boundary operator, T, we 
choose either the impedance boundary operator 

T(u)(x”, x2) = iK,u(x”, x2) (3.13a) 

or the global boundary operator 

(3.13b) 

where K, is defined in (2.7) and M is chosen large enough that T includes all 
propagating modes and a sufficient number of evanescent modes. The operator in 
(3.13a) is appropriate when only the Jth propagating mode is significant [2]. In 
both cases, the error due to the approximate boundary operator, T, is of order 
O(e-dwb~ ), where d(K)=min IR-K,(, j= 1, 2 ,.... 

THEOREM 3.1. Suppose that u satisfies (3.1) with T given by (3.13a) or (3.13b) 
(with M sufficiently large) and U(x) = eeiKxl u(x) with IK’I < CK, C independent of 
K. Suppose that B c 52, h = max(Ax,, Ax*), (3.3) holds, and K is uniformly bounded 
away from each Kj by d, j= 1, 2 ,... . Then there exist positive constants a (depending 
on d), C,(K), and C,(K) such that if 

C,(K) Kh is sufficiently small, 

then there is a unique solution Uh of (3.10b) and 

II u- WI ~*(n)+Ax, IP,,(U- UhNL2~~~+A~2 IID,,(U- Uhlll~2ci2j 

(3.14) 

(3.15) 

6 C,(K) 
(( 

f (Ax,)” (Ax2)2(m-j) IQ IDt,D~2-jU(x)12 dx)“2 + e-sxm 
j=O 

C,(K) and C,(K) are independent of Ax,, Ax, and U, and grow at worst polynomially 
with K. 
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We shall not prove Theorem 3.1 here. If the boundary operator T is given by 
(3.13a), the proof is very similar to that given in [ 111 for the exterior problem. 
(More precise information concerning the behavior of C,(K) and C,(K) as K 
increases can be obtained using the arguments and results in [3] and [ 111.) For T 
given by (3.13b), the technical difficulties associated with the global boundary 
operator may be treated using the arguments in [lo]. Note that (except for the 
exponentially small boundary error), the convergence rate in (3.15) is optimal in 
the sense of the approximation condition (3.3) provided the stability condition 
(3.14) holds. In fact, the stiffness matrix becomes ill-conditioned when Kh increases 
and the discrete approximation may not exist when Kh is too large. Such a stability 
condition is typical for finite element methods applied to indefinite problems. 

In view of the stability condition, (3.14) we see that even if all of the 
x,-dependence is factored out of U(X) (so that U is only a function of x,), it is not 
clear that we should obtain a reasonable approximation to U unless K Ax, is suf- 
ficiently small. Our numerical results indicate that, in fact, we do not obtain 
reasonable approximations for K dx, large when the test space Sh # 3”. However, 
as our numerical results in the next section demonstrate, this stability problem does 
not cause serious difficulties when Sh = Sh. To get an idea of why this is true, as 
well as some insight into the proof of Theorem 3.1, we examine the simple one- 
dimensional problem 

d*u(x) 
---K*u(x)=O in 52~ [0, 11, 

dx2 

du(O) 
(3.16) 

- = iKC,, 
dx 

and du(l) --iKu(l)=O, 
dx 

where C, is real. The solution of (3.16) is given by u(x) = C,e”‘“. Now suppose we 
have a family, Sh c H’(Q), of standard piecewise polynomial finite element spaces 
of degree m - 1 with m > 2. 

THEOREM 3.2. If we apply Method I or II to problem (3.16) with K’ = K and test 
space S’h = Jh s eiK’.x h S , then there exists a unique approximate solution Uh(x) Qh in 
(0, l] and 

(3.17) 

We see from this theorem that no stability constraint such as (3.14) is necessary 
for (3.17) to hold. Theorem 3.2 will be proved in the Appendix. It can be seen from 
the proof that if IK’- KI is small, we may choose h = dx to be large even for large 
K. It can also be seen that the proof fails if S”’ # Sh. In such cases, (3.17) holds only 
if K2h is sufficiently small (see Remark A.1 in the Appendix). 

Remark 3.1. Methods I and II can, of course, be readily extended to more com- 
plicated two- and three-dimensional problems. In view of the arguments in this and 
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the previous section and the numerical results in the next section, we expect that 
these methods should yield considerable improvements over standard discretization 
methods provided there is negligible backscattering. However, as indicated in 
Remark 2.2, the extent to which condition (2.3) holds (i.e., the size of 6) in different 
subregions of the computational domain depends on various physical aspects of the 
problem. Hence, the proper choice of mesh sizes in different subregions depends on 
these factors. A general and systematic approach for determining appropriate mesh 
sizes and other relevant parameters can be developed with the use of adaptive dis- 
cretization methods. This is discussed in more detail in [12]. An adaptive dis- 
cretization method has been developed and implemented, [ 173, for treating elliptic 
problems on unbounded regions. 

As an example of the use of non-uniform mesh sizes, we consider the three- 
dimensional exterior scattering problem (2.15). We very briefly describe how this 
problem was treated in [ 1 l] using Method I. We first replace the unbounded 
domain B by a bounded domain 0, with outer boundary given by 
rR = {x: 1x1 = R}. The radiation condition is replaced by the approximate radiation 
boundary condition, au,/& = (X- l/R) uR on rR, where uR denotes the solution 
of the new problem on 52,. It was proved in [ 111 that with U, E e-iK’uR and B an 
arbitrary fixed subset of QR, we have 

IIU- ~Rllr~~B,=w-*). (3.18) 

In view of (2.16) and (3.18), we expect that UR can be efficiently approximated 
using Method I with successively larger radial mesh sizes in regions further away 
from the origin. This was proved rigorously in [ll] by systematically partitioning 
Q, into annuli $.Y with successively larger radial mesh sizes on each Q’, so that the 
resulting finite element space has optimal dimension O(hd3), independent of R. It 
was shown that optimal convergence rates hold in this case. We refer to [ll] for a 
detailed description and analysis of the method and to the next section for 
numerical results indicating the effectiveness of the method. 

4. NUMERICAL RESULTS 

In this section we shall demonstrate the effectiveness of the finite element 
methods developed in Section 3 to treat nearly one-way wave propagation. We first 
demonstrate typical results for propagation in the two-dimensional waveguide sec- 
tion, 9, given by (3.9) with xoo = 1. The model problem is 

(-A-K*)u=O in Q, WXl, 0) 
ax, =u(xI,l)=o, 

au(o, 4 
= g(x*h and a24 x2) 

ax, ax, 
= T(uNL x2), 

(4.1) 
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where the radiation boundary operator, T, is given by (3.13b). The datum, g, is 
chosen so that the exact solution is given by 

u(x) = g ajwl 1 
cos j-- rcx2 

j= I ( ) 2 (4.2) 

with Kj given by (2.7). 
We approximately solve (4.1) using the standard finite element method (SFEM) 

with trial and test space given by Sh, consisting of continuous piecewise linear 
functions defined on right triangles. We also employ Method I or Method II 
described in Section 3 with test space given by gh = eiK’*lSh, where K’ is suitably 
chosen. As shown in Section 3, Methods I and II are equivalent in this case and our 
finite element solution approximates U(x) - e- *KXk(~), obtained by factoring out 
eiKx’ from the exact solution. We refer to this method as FFEM. We employ a 
uniform NX,xNXZ grid (hence the grid sizes are l/(N,, - 1) and l/(N,, - 1)) and we 
measure the normalized mean-square discretization error, EZ. The resulting linear 
equations are solved using the iterative method developed in [2]. 

For our first example, we choose data so that the exact solution is u(x) = eiKjXl 
cos( j - &) rcx2 for some j > 1. We set K’ = Kj, so that U(x) = e ~ iK’x’~(~) is indepen- 
dent of x1 and we compare SFEM with Method I using test spaces Sh (FFEM) and 
Sh. We see from Table I that for j = 4, K = 24, and N,, = 65, the errors grow very 
slowly using FFEM as dx, increases. Hence, we obtain reliable approximations 
with very few x, grid points. On the other hand we see from the last three entries 
that the errors increase dramatically when dx, increases using Method I with test 
space Sh. We also see that the worst results are obtained using SFEM, as expected. 
Similar conclusions follow from Table II with K= 48. The errors are slightly less in 
this case for FFEM since K is further away from the cutoff frequency, K4, present 
in the solution. For the other two methods, the error increases with K. Finally, we 
see from Table III with j= 12, N,, = 257 and 512, and K = 40 and 80 that FFEM 

TABLE I 

K=24, N,,=65, j=4 

Method Nx, 

SFEM 65 13.3 
FFEM 17 1.0 
FFEM 9 1.7 
FFEM 3 4.1 
Method I” 33 1.6 
Method I” 17 5.0 
Method I” 9 44.5 

a The test space is S” 
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TABLE II 

K=48,Nx,=65,j=4 

Method N,, 

SFEM 65 69.0 
FFEM 17 0.5 
FFEM 9 1.2 
FFEM 3 3.2 
Method I” 65 1.4 
Method I” 33 10.8 
Method I” 17 >lOO 

o The test space is Sh. 

again yields reliable approximations with very few xi grid points, provided N,, is 
sufficiently large. 

We see from Tables I and II that FFEM yields the best results. In fact, we have 
found this to be generally true in all of our test cases. In the remainder of this sec- 
tion we shall only compare SFEM and FFEM. For our next example, we consider 
the same solution, U(X) = eihxl cos( j - 4) rcx2, as in the first example. This time, 
however, we set K’ = Kjcos CI with 0 < a < 1rc/2 and U(x) = e-iK’“lu(~). As a increases 
from 0 to 7r/2, we expect the improvement due to FFEM to diminish. In fact, for 
a = 7r/2 the method reduces to SFEM. 

Note. The standard paraxial approximation is valid provided a G 7r/12 [ 151. 
However, for a > 7r/12 the usual parabolic equation may no longer be an adequate 
approximation to the Helmholtz equation. Recently, modifications of this method 
have been developed that give adequate approximations to the Helmholtz equation 
provided a < x/4 [ 151. It is clear that FFEM is more generally applicable, since this 
is a full angle approximation. 

TABLE III 

FFEM Is Used with j= 12 

512 40 9 2.6 
512 40 3 4.3 
257 40 3 10.2 
512 80 9 1.7 
512 80 3 4.0 
257 80 3 8.0 
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TABLE IV 

K=12,Nx,=65,j=4 

a 
(radians) Nx, 

n/2 (SFEM) 33 5.3 
4x/9 33 4.1 

n/3 17 5.0 
44 9 6.1 
n/12 5 5.0 

In Tables IV-VI, we demonstrate typical results for j = 4, NX2 = 65, and various 
angles a and wave numbers K Our first observation is that for a < 11/12, N,, can be 
chosen very small. In such cases, it might be more efficient to solve the resulting 
linear equations using a banded Gaussian elimination solver instead of an iterative 
method. Furthermore, even for angles a for which parabolic equation type methods 
fail, there is still a substantial reduction in the number of x1 grid points. 

We also observe that the improvement of FFEM over SFEM appears to increase 
with K (even for a close to n/2), although in general the error increases with K for a 
fixed mesh size. (This is also the case if the domain size increases.) It was shown in 
[3] for SFEM that when K is sufficiently large and uniformly bounded away from 
all cutoff frequencies, the error E2 behaves like O(K3h2) for a fixed domain. Hence, 
if K is doubled and both N,, and NX2 are halved, the error is doubled. We see from 
Tables IV-VI (where N,., is kept fixed) that the error grows more slowly with 
increasing K using FFEM than using SFEM. On the other hand, as K-+ 00, the 
rate of increase of the error using FFEM approaches that predicted in [3] for 
SFEM. 

For our third set of numerical experiments we consider a solution of the form 
(4.2) with K> (M- 1) rr. This is equivalent to assuming that all attenuating modes 
and all other modes corresponding to j> M are negligible. In Table VII, we com- 

TABLE V 

K=24,Nx,=65,j=4 

a 
(radians) Nx, 

42 65 13.3 
4n/9 65 8.2 

xl3 33 6.6 
n/4 17 5.5 
n/12 5 5.5 
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TABLE VI 

N,, = 65, j = 4 

K 

48 
48 
96 
48 
96 

a 
(radians) 

43 
nl4 
n/4 
n/12 
K/12 

N,, 

65 8.8 
33 5.4 
65 8.9 

5 2.3 
5 11.7 

pute the error E2 for uj = 1, j = l,..., A4, and various values of M, N,,, N,,, and K. 
We apply FFEM with 

K; =; ,$ Kj, 
]=I 

(4.3) 

(In all cases, we have found that the errors using FFEM with K’ = K; are substan- 
tially less than those obtained using SFEM.) We see from Table VII that for fixed 
M, N,,, and NX2, the errors decrease as K increases. This is contrary to results 
obtained using standard discretization methods and is due to the fact that Kj --, K, 
j= l,..., A& and K1 -+ K as K+ co. Hence for Kg,, U(x) = eCiK&(x) is nearly 
independent of x, and very few x, grid points are needed. On the other hand, for K 
fixed the error increases as M increases. 

In general, we may not know which propagating modes are important in the 
solution. In such cases we could simply define K’ by (4.3) with A4 denoting the 

TABLE VII 

FFEM with K’ = K; (4.3) 

E2 

M N,, NY, K (%) 

4 17 65 15 5.1 
4 17 65 24 1.9 
4 9 65 24 2.9 
8 17 65 30 26.5 
8 17 65 45 7.0 
8 17 65 100 1.8 
8 9 65 100 3.9 
8 5 65 100 11.2 

12 17 129 45 47.0 
12 17 129 100 4.0 
12 17 129 150 2.0 
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TABLE VIII 

SFEM and FFEM with K’ Given by K; (4.3), K; (4.4), 
and K; (4.5); N,,=65 

M K Method N,, 

8 26 SFEM 65 11.3 
8 26 FFEM (K;) 9 10.5 
8 26 FFEM (K;) 9 3.8 
8 26 FFEM (K;) 9 3.4 
8 26 FFEM (K;) 5 10.9 
8 26 FFEM (K;) 5 6.8 

12 38 SFEM 65 31.8 
12 38 FFEM (K;) 9 11.7 
12 38 FFEM (K;) 9 3.3 
12 38 FFEM (K;) 9 3.0 
12 38 FFEM (K;) 5 10.8 

12 38 FFEM (K;) 5 5.5 

number of possible propagating modes. We would still expect FFEM to yield a 
substantial improvement over SFEM. On the other hand, better choices of K’ could 
be made if we have more information about the solution. We demonstrate this in 
Tables VIII and IX. In Table VIII we compute E, for the smooth solution, 

u(x) = 2 : e'+'cos 
j=l J 

TABLE IX 

SFEM and FFEM with K’ Given by K; (4.3), K2 (4.4), K; (4.5), 
and Kd (4.6); N,, = 129 

M K Method Nx, 

8 30 SFEM 33 70.0 
8 30 FFEM (K;) 33 8.5 
8 30 FFEM (K;) 33 7.4 
8 30 FFEM (K;) 33 6.8 
8 30 FFEM (C) 33 5.0 

12 45 SFEM 33 rloo 
12 45 FFEM (K;) 33 29.4 
12 45 FFEM (K;) 33 24.2 
12 45 FFEM (K;) 33 19.6 
12 45 FFEM (K&) 33 8.8 
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using SFEM and FFEM with K’= K’i defined by (4.3) and M= 8 and 12. In view 
of (2.12) and (2.13), we also define the weighted average 

K' =Cj"=, bjl K, 
* C,"= i l"jl 

and the value derived in [ 161 

(4.4) 

(4.5) 

We again apply FFEM. It is clear from Table VIII that FFEM using either K;, K2 
or K; is superior to SFEM and K; gives the best results. 

In Table IX we consider the solution 

M e+’ cos ( j- 1) nx2 
u(x)= c 

j= I JK2-((j-;)n)' 

with M= 8 and 12. In this case (with (M- t) x < K-c (M + f) n), U(X) corresponds 
to the propagating part of the Greens function G(x; x’) for problem (2.4) in the 
semi-infinite waveguide (2.5), with source point x’ = (0,O). This solution behaves 
differently than the solutions considered before since the high propagating modes 
now contain most of the energy. Hence, we define the average of the four highest 
modal wave numbers 

(4.6) 

and compare FFEM using K;, K;, K;, and K>. Again, we see from Table VIII that 
K;, K;, and K; yield considerably better results than SFEM. However, this time 
the best results are obtained using Kk. These results indicate that the choice of the 
most suitable R, as well as the appropriate number of grid points, depends strongly 
on the oscillatory nature of the solution. 

For our final example, we illustrate the use of non-uniform mesh sizes combined 
with FFEM in connection with the exterior scattering problem, (2.15). Consider the 
following axially symmetric three-dimensional model problem. Let Q denote the 
region exterior to the sphere, r= {x: 1x1 = rO}, and let 8’ denote the interior of this 
sphere. The boundary value problem is given by 

(-A-K2)u=0 inQ, g=gon I-, and u is outgoing at infinity. (4.7) 

The data, g, corresponds to the solution 

u(x) = 

eiKlx -x,1 

4x/x-xX,1' (4.8) 
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where x, is a fixed axial point inside P. We replace Q by a bounded domain by 
introducing the artificial outer boundary, rR = {x: 1x1 = R}. Employing spherical 
polar coordinates and axial symmetry, we thus consider the rectangular com- 
putational domain, 52, = ((r, 6): r0 < r 6 R, 0 6 8 < TC f. 

We approximate the outgoing Sommerfeld radiation condition by either of the 
following two boundary conditions on r,: 

B,uEg+ -f-K u=O ( ) on rR 
Y 

or 

on rR. (4.9b) 

The boundary operators, B, and B,, correspond to the first two in a hierarchy of 
approximate boundary operators developed in [4]. Each operator, B,, introduces 
a boundary error that decays like Rpym with yrn > 0 and ym increasing with m (see, 
e.g., (3.18) for m = 1). For details concerning these boundary operators and their 
implementation in a variational formulation, we refer to [4]. It thus follows that 
the two main sources of error in the numerical solution of (4.7) are the boundary 
error and the discretization error. For smaller wave numbers the boundary error 
usually dominates, whereas for larger wave numbers the discretization error 
dominates. 

We again approximately solve the resulting boundary value problem using 
SFEM and FFEM. For SFEM, we employ continuous piecewise linear trial and 
test functions defined on a triangular partition in (r, (3) coordinates. When using 
FFEM, we first factor out the far field radial dependence eiKr. As described at the 
end of Section 3, in order to effectively apply FFEM we must grade the mesh using 
successively larger mesh sizes further away from the origin. A method for doing this 
was developed and analyzed in [ 111. For our sample computations we choose 6 
radial grid points, set R = 1.125, r. = 0.5, and again measure E2, the normalized 
mean-square error. The number of 0 grid points is denoted by NTH and these 
points are equally spaced. When employing SFEM, we use the radial grid points 
rj = r,, + ((R - r,)/5)j, j= O,..., 5. When FFEM is employed, we grade the mesh in 
accordance with 

r,=r,+h, and rj=rjp, + C h r?12 0 01-19 j = 2,..., 5, (4.10) 

where ho = 0.047 and Co = 5. We shall discuss the mesh grading further in Remark 
4.1 below. 

Typical numerical results are presented in Table X for different values of K and 
x,. For K = 0 the boundary error dominates and we employ the boundary operator 
B, in order to compare discretization errors. For all other values of K, it suffices to 
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TABLE X 

SFEM and FFEM (with a Graded Mesh) for the Exterior Problem 

K NTH XS SFEM FFEM 

0 41 0.2 
12 81 0.2 
24 161 0.2 
48 161 0.2 
96 161 0.2 

120 161 0.2 
0 41 0.3 

12 81 0.3 
24 161 0.3 
48 161 0.3 
0 41 0.4 

12 81 0.4 
24 161 0.4 

0.6 
32.4 

>lOO 
z-100 
>lOO 
>lOO 

1.1 
31.9 
>lOO 
>lOO 

2.1 
31.0 
>lOO 

0.6 
2.2 
2.5 
2.2 
4.7 
8.4 
0.9 
4.1 
8.5 

21.6 
1.6 
8.3 

26.8 

use B,. It is clear from (4.8) that for small values of x,, the r-dependence of U(x) = 
e-iKr U(X) is weak and hence very few radial grid points should suffice when using 
FFEM even for large K. This is confirmed in Table X. We also see that for all 
values of x, and a wide range of wave numbers, the mesh grading combined with 
FFEM results in a dramatic reduction in the error for a fixed number of grid 
points. When K becomes too large, it is necessary to either insert more radial grid 
points or make R smaller and employ a higher order (more complicated) boundary 
operator. The use of higher order boundary operators does not diminish the 
improvements obtained by combining FFEM with an appropriate mesh grading. 

Remark 4.1. To get an idea of the reduction in computations resulting from 
using FFEM instead of SFEM, note that most of the computational cost involves 
the solution of the resulting system of linear equations. Since this system of 
equations can be quite large, we have employed a preconditioned conjugate 
gradient iterative method (applied to the normal equations), developed in [2], for 
both SFEM and FFEM. We have seen that the number of grid points required to 
achieve comparable accuracy is considerably reduced using FFEM, say by a factor 
of A< 1. Hence the storage requirements and operation count/iteration are reduced 
by approximately a factor of A. It is also the case that the number of iterations is 
generally reduced using FFEM since the condition number of the resulting matrix 
is smaller. Furthermore, when the application of FFEM allows the use of a small 
number of grid points in one coordinate direction (as we have seen is frequently the 
case), even greater savings in cost can be obtained using a banded Gaussian 
elimination solver. Therefore, the reduction in total computational cost resulting 
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from using FFEM will typically be a factor 1 <A. The value of J.’ depends on 
various factors, including the choice of reference wave number and preconditioning. 

Remark 4.2. The mesh grading defined by (4.10) involved constants, Co and h,, 
that were chosen somewhat arbitrarily. (The exponent, $, was motivated by the 
theory in [ 111 since we are using piecewise linear finite elements.) Furthermore, 
note that the mesh grading chosen is independent of K and x,, whereas we expect 
these parameters to be important considerations in the selection of the mesh size. A 
more systematic approach based on adaptive discretization methods could be quite 
useful in determining optimal grid sizes as well as other relevant parameters such as 
R. This was done in [ 171 using adaptive finite element methods in connection with 
the exterior problem for a class of positive definite elliptic operators. In the present 
context, this corresponds to K = 0. In [ 171, suitably constructed error indicators 
and estimators were employed to determine optimal grid points as well as the size 
of the truncated domain. Furthermore, a preconditioned conjugate gradient method 
was employed at several steps of the process to iteratively improve the accuracy of 
the finite element approximations. In future work, we intend to extend the methods 
employed in [17] to treat the indefinite, nonselfadjoint case (i.e., KZO) for both 
waveguides and exterior problems. We also intend to apply our methods to more 
complicated propagation models, including those with backscattering. 

APPENDIX 

Proof of Theorem 3.2. Setting U(x)=e- iK’x~(~), we obtain the following 
variational problem for U: 

A(U, V)-j: (F F+iK’( U(x)%-% m) dx 

+(K’*-K*) I1 U(x) V(x)dx-iKU(l) V(1) 
0 

= -iKCo V(0) VV(x) = epiK’%(x) in H’(Q). (A.11 

We now apply Method I with test space Sh = Sh = eiKxSh. Hence, letting Uh in Sh 
denote our approximation to U, we obtain the following variational problem for 
Uh, 

A( Uh, Vh) = -iKC,m tlVh(x) = e- iK’x~h(~) in Sh, 64.2) 

where A ( , ) is defined by (A.1 ). (As before, we can see that Method II with 
Sh = gh yields the same discrete problem.) 

Assume, for now, that there exists a solution Uh of (A.2) and set 

Eh(x) = U(x) - Uh(x). (A.3) 
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It follows from the definition of A( , ) in (A. 1) that 

+ (K’*-K*) IEh(x)12 

Now suppose that K’ = K, so that 

U(x) = co on Q. (A.5) 

Since U is real, we may assume that the finite element space Sh (and therefore uh) 
is also real. Equating the real parts of (A.4) and applying (A.1) and (A.2), we 
deduce 

dx= Re(A(Eh, Eh)) = Re(A(Eh, U- U”)) VUA in Sh, (A.6) 

where Re( ) denotes the real part. 
Since an approximation condition analogous to (3.3) holds for the finite element 

space Sh, we may apply the Schwarz inequality and the Sobolev inequality to the 
right side of (A.6) and choose a suitable UA in Sh to conclude that 

* dx< C(K) llEhlI,+cn, IIU- UAIIH~(Rj 
64.7) 

6 C(K) A”- ’ lIEhI H’(n) I UIwy,, = 0, 

since U is constant and I IHm only involves the mth order derivative of U. Combin- 
ing (A.3) and (A.7), we see that Uh(x) is a real contant, C’, on 52. Hence 

u”(x) E py/h(X) = C’& (A.81 

is our approximate solution of (3.16). Using (A.2), it follows readily that 

- iKC,oh(O) = h, (f$f$ F - K2uh(x) m) dx 

-iKuh(l)Vh(l) Vvh in Sh. 

We next employ (A.8) and integration by parts and choose a vh in Sh such that 
~~(0) = 1 and vh vanishes near x = 1 to obtain 

- iKCo = 
&Uh(X) 

- ~- K2uh(x) 
dub(x) 

dx* 
Vh(X)dx--- dx v (x)lxco= -iKC’. 
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Hence C’ = C,, and 

Eh(X) = 0 on 52. (A.9) 

It thus follows that (3.17) holds without assuming any stability condition such as 
(3.14). To see that there exists a Uh in Sh satisfying (A.2), it suffices to prove uni- 
queness since Sh is finite dimensional. If Uh satisfies (A.2) with C, = 0, then we see 
from (AS) that U(x)=0 on Sz. It now follows from (A.9) that Uh(x) =0 on !S and 
(A.2) is well-posed. Q.E.D. 

Remark A.l. If Method I is employed with test space Sh instead of Sh, then the 
bilinear form A ( , ) defined in (A.1 ) is replaced by 

A,(U, V)c\ol (~~+iK’Y(x)~-K2U(x)~)dx 

-XU(l) V(1). 

Using this bilinear form, we then obtain the following equation instead of (A.4): 

dx=A,(Eh,Eh)+iKjEh(1)12 

(A.lO) 
- 

s 

1 h 
iK’Eh(x) 

0 
q dx+K’ j’ IEh(x)12 dx. 

0 

A standard duality argument from finite element theory (see [6]) can be applied to 
the last term in (A.lO), resulting in the estimate 

K2 1; IEh(~)(2 dx < C(K) K2h2 JIEhll$cn,. (A.ll) 

Combining (A.lO) and (A.ll) with the proof of Theorem 3.2, we can show that 
(3.17) holds provided the stability condition (3.14) holds. 
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